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Abstract

A finite volume method is presented to analyze the fission gas release from UO fuel during Light Water Reactor normal2

or off-normal operations, the latter being limited to Class-II type incidents. The model assumes gas diffusion inside a
spherical grain under time-varying conditions. It also uses a time-varying imperfect sink condition at the grain boundary due
to the accumulation of gas by irradiation-induced re-solution. The onset of gas release occurs due to the saturation of the gas
amount in the grain boundaries. The problem is efficiently solved by a fast numerical technique which uses finite volumes,
well-suited for application in fuel rod analyses computer codes.

1. Introduction

The release of stable fission gases from UO fuel is2

important in predicting fuel rod performance during Light
Ž .Water Reactor LWR operation. Gas release increases the

fuel rod internal pressure and temperature by degrading the
pellet-cladding gap conductance. Both effects must be
minimized for safe fuel rod performance.

Fission gas release is a complex phenomenon, involv-
Ž w x.ing many mechanisms see for instance Ref. 1 . It can be

divided into an athermal regime and a thermally-activated
regime. Athermal release is the result of gas atom motion
by recoil and knock-out which escape through the free
surfaces of the fuel. Its amplitude remains low except at
high burnups in the rim region. This type of release will
not be dealt with in this paper.

Thermal release is observed above a temperature ‘in-
w xcubation’ threshold that decreases with burnup 2 . This

threshold can be identified by the presence of inter-granu-
lar gas, most often observed as lenticular bubbles, whose
radius is a fraction of one micron. Gas atoms diffuse from
the center of UO grains towards grain boundaries with a2

velocity that increases with temperature. Initially, these
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atoms accumulate at the grain boundaries and there is no
release. When the number of gas atoms per unit area, N,
reaches a saturation value, N , there is the onset of the gasS

release.
The presence of inter-granular gas introduces another

phenomenon. Fission spikes bring back into solution a
fraction of inter-granular atoms. This induces a ‘re-solu-
tion’ flux which counter-acts in part the flux diffusion.
Re-solution is also acting inside the grains where atoms
cluster into fine bubbles made of a few atoms and whose
radius is ;10y9 m. These bubbles are brought back into
solution, recombination and re-solution balancing out.

w x w xSince the pioneering work of Booth 3 and Speight 4 ,
there is a well-established mathematical framework to
solve the above-mentioned diffusion problem. Booth de-
rived analytical expressions for constant irradiation condi-

Ž .tions in two cases relevant to LWR operations: i the
constant gas production case relevant to steady-state opera-

Ž .tion, and ii the zero gas production case which is more
Ž .relevant to transient operation load-follow and incidents

when the power level is high enough for the gas produc-
tion to be neglected with respect to diffusion release. This
study was limited to a perfect sink boundary condition
where there is a release as soon as gas atoms reach the
grain boundary, or expressed mathematically, the concen-
tration at the grain boundary is zero. Speight improved this
Booth model by introducing re-solution. Then, there is an
imperfect sink condition where the concentration at the
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grain boundary remains finite. A closed form analytical
w xsolution of the model is given by Turnbull 5 .

w xLater works 6–18 treat the general problem of time-
varying conditions. There is no closed form analytical
solution to this problem and the problem is solved either
with a numerical approach or a semi-analytical approach.
Both approaches have their merits and drawbacks. In
principle, with a numerical approach, one can obtain the
required accuracy by increasing the number of meshes
andror time-steps, at the expense of computer time. The
other approach is computer-time efficient but may not be
accurate enough for all situations.

Here, we present a new method which combines the
advantages of both approaches. It is numerical but fast
enough to compete with semi-analytical methods. It is
based on the finite-volume method for space discretization.

To be more specific, Section 2 describes the physical
model. It is important to know the order of magnitude of
the physical quantities in order to look for the numerical
algorithm that is best suited to the physical problem.
Although we want an algorithm that is accurate for a wide
range of conditions, we restrict ourselves to all situations
encountered in LWR normal operations and off-normal
operations that are limited to Class-II incidents. Section 3
presents the numerical technique. Several algorithms have
been tried for space and time discretization. An optimal
choice was found. The results are presented in Section 4.
The method is initially tested with three constant condition
cases which have analytical solutions. These cases pro-
vided a means of evaluating the power of the method. The
results of numerical cases with time-varying conditions are
then presented. The results are discussed in Section 5,
together with other numerical schemes. A conclusion is
presented in Section 6.

2. The model

2.1. Introduction

The model is based on previous closely related models
w xconsidered by several previous investigators 4–6,12–17 .

Gas release is calculated by modeling one UO grain. The2

grain shape is idealized by a spherical shape. Gas release is
a two-step diffusion process from the interior of the grain
to the grain boundary. In the first step, gas atoms accumu-
late at the grain boundary without release. In the second
step, gas release is activated when the gas density at the
boundary is bigger than at saturation density. The problem
is then to solve a diffusion equation inside the grain with a
time-varying condition at the grain boundary.

This Section is devoted to formulate the ensuing mathe-
matical problem. First, the expressions andror orders of
magnitude of key physical parameters are given, namely,

the grain size, the diffusion coefficient of Xenon inside
UO , and the saturation density. It is important to know2

the range of these parameters to find an efficient algorithm
for solving the mathematical problem.

2.2. Grain size

Observations indicate that grain growth occurs at ele-
vated temperatures in agreement with grain growth models
w x19 . However, we have chosen to model the grain size as
constant. This approach was taken with for simplification
and because grain growth induces opposite effects. On one
hand, grain growth tends to lower diffusion and hence gas
release. To rigorously treat the problem, one must tackle
the more difficult task of solving the diffusion equation

w xwith a moving boundary 20 . On the other hand, grain
growth causes a sweeping of the gas accumulated on the
grain boundaries which enhances the gas release. Compu-

w xtations though have shown 21 that gas release is higher
with constant grain size and no gas sweeping than when
both effects of grain growth and gas sweeping are taken
into account.

2.3. Diffusion coefficient

w xWe follow the formalism of Turnbull et al. 22,23 . In
this formalism, the diffusion coefficient, D, is the sum of
three components D , D , and D . The D term repre-1 2 3 1

sents the intrinsic diffusion in the absence of irradiation.
The D and D terms represent the thermal and athermal2 3

contributions induced by irradiation, respectively. A cor-
rection due to the irradiation-induced re-solution of intra-

w xgranular bubbles is, according to Ref. 4 :

D1q2q3
Ds , 1Ž .X1qgrb

where

D sD qD qD 2Ž .1q2q3 1 2 3

and g and bX are the probabilities of trapping atoms within
intra-granular bubbles and of re-solution of these atoms by

w xfission spikes. The random-walk formula 1 gives

gsD rL2 , 3Ž .1q2q3

where L is the mean free-path between two bubbles. Eqs.
Ž . Ž .1 and 3 yield

1
Ds . 4Ž .X21r D q1r L bŽ .Ž .1q2q3
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The preceding expression indicates that D attains a
saturation value of L2bX at high temperatures. The expres-
sions for the diffusion coefficient terms are

yT01
D sD exp , 5Ž .1 01 ž /TK

XyT P02
D sD exp , 6Ž .(2 02 ž /T 20K

PX

D sD , 7Ž .3 03 20
Ž . Xwhere T is the local temperature K and P is the linearK

Ž .heat generation rate LHGR expressed in kWrm units.
w xThe following values 22–24 were chosen where D is

expressed in m2rs units: D s3.9=10y6 m2rs, T s01 01

45275 K, D s1.77=10y15 m2rs, T s13800 K, D02 02 03

s4=10y21 m2rs, L2bX s10y15 m2rs.

2.4. The incubation threshold

The incubation threshold is obtained from theoretical
and experimental considerations. The theoretical back-

w xground follows 12 . Fission spikes bring back into solu-
tion part of the gas contained within inter-granular bub-
bles. The corresponding re-solution flux is

J s bN r2, 8Ž . Ž .rs

where b is the probability of re-solution of the inter-granu-
lar atoms, N is the density per unit area at the grain
boundaries. An expression for the mean concentration at
the grain boundaries, c , is obtained by assuming that thed

re-solution flux is close to the diffusion flux. From Fick’s
Ž .law, the diffusion flux D= c; Dc rd where c is thed d

width of the re-solution layer at the grain boundaries.
Hence

c s bNd r 2 D . 9Ž . Ž . Ž .d

w xMoreover, following Ref. 4 , the flux out of the grain
is of the form

JsJ 1yc r b t , 10Ž . Ž .Ž .0 d

where b is the creation rate and J is the flux in the0

absence of re-solution. This flux, J , for a spherical grain0

of radius a is

1 d 4
3J s p a b tF , 11Ž .0 02 d t 34p a

where F is the gas release fraction in the absence of0
w xre-solution. The Booth diffusion model 3 gives an ap-

proximate solution for low releases:

'4 Dt
F ; . 12Ž .0 ' ap

Finally, the evolution of the surface density at the grain
boundaries is obtained from the following equation:

'd Dt Nbd
Ns4b 1y . 13Ž .ž /'d t 2 Db tp

The incubation time, t , is given by the solution of thei
Ž .previous equation for t s t N where N is the thresholdi S S

value of the surface density. When D is constant with
time, two asymptotic solutions of this equation at low and
high temperatures are obtained:

T : t ; bN d r 2 Db ,Ž .Ž .low i S

2r31r39 N 1S
T : t ; . 14Ž .high i 1r3ž / ž /8p b D

ŽThe expression of the incubation burnup B ;b t r 6.9i i
21. Ž . Ž .=10 can be deduced from Eqs. 1 – 7 of the diffusion

coefficient. At low temperatures

bN dS
B ; , 15Ž .i 2 D qDŽ .2 3

and at high temperatures

1r31r39 12r3 X1r3 2B ; N b qL b . 16Ž .Ž .i Sž / ž /8p D1

Two important remarks enable one to combine these
two asymptotic expressions in one single expression. On
the one hand,

T ;T r3. 17Ž .02 01

On the other hand, there are great uncertainties for the
values of the parameters b, d and N and, a fortiori, onS

the combination of these parameters. We therefore seek a
solution for the incubation threshold of the form

B1
B s qB , 18Ž .i MINexp yT rT qB T yBŽ . Ž .B K 2 K 3

Ž .where T s local temperature K , T sT s13800 K.K B 02

The parameters B , B , B , and B are the adjustable1 2 3 MIN

parameters of the model, in agreement with experimental
fission gas release results. The initial values of these
parameters were taken from the usual values found in
literature. The following set of parameters proved to be a
reasonable experimental fit: B s1 MWdrtM, B s3.3=1 2

Ž .Fig. 1. Incubation threshold. The solid line is given by Eq. 18 .
Ž .The dashed line is given by Eq. 13 .
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10y8 Ky1, B s603 K, B s1500 MWdrtM, T s3 MIN B

13800 K. Fig. 1 shows the evolution of the thermal
Ž .threshold, as given by Eq. 18 .

w xThe order of magnitude of N can be estimated 13 byS

supposing that inter-granular atoms cluster into lenticular
bubbles. The parameters of the bubble shape are, the
radius R , the volume V , and the dihedral angle 2u .B B

Ideal gas law links the bubble pressure, P, and the number
of atoms, n, in a bubble:

PV snkT . 19Ž .B

The following relations hold:

n nsN , 20Ž .B S

n sF rpR2 sin2u , 21Ž .B B B

PsP q2grR , 22Ž .EXT B

V s 4pr3 R3 f u , 23Ž . Ž . Ž .B B

3 1 3f u s1y cos uq cos u , 24Ž . Ž .2 2

where n is the number of bubbles per m2, F is theB B
Žfractional coverage of bubbles i.e., the ratio of the area

.occupied by bubbles to the grain area , and P is the sum
Žof the surface tension and of the other contributions hy-

.drostatic, mechanical stresses . These expressions allow
one to deduce the following equality for N :S

2N s 4 f u r3kT sin u P q2grR R F . 25Ž . . Ž .Ž .S EXT B B B

Ž .Not all quantities in Eq. 25 are well known. Most
analyses assume gs1 J my2, R s0.5 m, F s0.25,B B

Ž . 2us508 and then f u rsin us0.288. The pressure is the
least-well known term. Between the two limiting cases

Ž . ŽP s0 then, Ps4 MPa and P ;120 MPa UOEXT EXT 2
w x. 19 y2 Žfracture threshold 25 : N varies from 10 m similarS

. 20to the value given by a mono-atomic layer to 3=10
y2 w x Ž .m . From Ref. 26 , P is close ;90 MPa to the upper

limit, in agreement with the values of N reported in Ref.S
w x Ž y20 y2 .27 a few 10 m . The dashed curve of Fig. 1

Ž .represents the solution of Eq. 13 for the expressions of
Ž . Ž .the diffusion coefficient presented in Eqs. 1 – 7 and the

following values of N s3=10201273rT my2 and bsS K

2=10y6 sy1. With this choice, both curves in Fig. 1 were
found to match closely.

The gas equation of state differs slightly from the ideal
Ž Ž ..gas law Eq. 19 for the preceding values of parameters.

However, the order of magnitude of N is the same. ForS

instance, one finds N s2=1020 my2 instead of 3=1020
S

y2 w xm by using a hard sphere equation of state 28 .

2.5. The diffusion equation

Gas release follows the kinetics of diffusion from the
interior of the grain towards the grain boundary. This
mechanism is described with the classical model of an
equivalent sphere of radius a.

The diffusion equation can be expressed as

E c
sbqdiv D grad c , 26Ž . Ž .Ž .

E t

Ž . Žwhere c r, t is the local concentration number of gas
.atoms per unit volume and r is the space variable.

Ž .The boundary condition is given by Eq. 9 .

3. The finite volume method

3.1. Introduction

The finite volume method consists in integrating the
equation to be solved over control volumes and then
discretizing the integral form. It has several attractive
features. It ensures conservation of the integrated quanti-
ties, a fundamental property to respect in physics. It com-
bines the simplicity of finite differences with the flexibility
of finite elements.

Since the grain size is small, D can be assumed to be
Ž Ž ..space-independent. Then, the diffusion equation Eq. 26

can be simplified with the following change of time vari-
able

Dt X
ts d t 27Ž .H 2a0

to read

E c
Xw xydiv grad c sb . 28Ž . Ž .

Et

Ž .In Eq. 28 , the creation rate is normalized from b to
b

Xsba2rD and r is normalized to xsrra.
Ž .The integral form of Eq. 28 over a control-volume is

XE E c E cx iq 1
X X2 2 2cx d xyx qxH iq1 i

X XXEt E x E xx xx iq 1 ii

x X

iq 1 X 2s b x d x . 29Ž .H
Xx i

Control-volumes are iso-volumes. Denoting the bound-
Ž . X Xaries node points of control-volume i by x and xi iq1

and the number of control-volumes by N :x

1r3
i

Xx s . 30Ž .iq1 ž /Nx

The mesh points, x , are located at a mid-distancei

between the node points:

x s0.5 xX qx X . 31Ž . Ž .i i iq1

3.2. Space discretization

3.2.1. Low-order scheme
This is the standard scheme. It consists of differencing

the spatial-derivative term as follows:

E c c yci iy1
s , 32Ž .

XE x D xx iy1i
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where D x sx yx . A piece-wise constant variationiy1 i iy1

is assumed for the spatial-derivative term:

E X dc x X 3 yx X 3
x iq 1 i iq1 i2cx d xs . 33Ž .H
XEt dt 3x1

The outcome is a classical tri-diagonal system of equa-
tions that can be solved for the unknown values c . Thisi

type of system is quickly solved by the well-known TDMA
algorithm.

This type of discretization is akin to finite differencing
and is known to have rather poor convergence properties
w x9,15 . It needs a rather large number of mesh points,
particularly at low release. In order to increase the accu-
racy of the method, a new higher-order scheme has been
developed and is addressed in the following section.

3.2.2. Higher-order scheme
This is the highest-order scheme for the derivative

terms that is compatible with the tridiagonal system struc-
ture. Namely, a linear variation is assumed everywhere for
the concentration except at end-volumes where a quadratic
variation is assumed. Then, for i/1, 2, N , N , Eq.xy1 x
Ž . Ž .31 holds and Eq. 33 is replaced by

E Xx iq 1 2cx d xH
XEt x i

dc X x yx dcx iq 1iy1 i i2s x d xqH
dt D x dtx iy1i

=

Xxyx xyxx xi iq1i i2 2x d x x d xH H
X D x D xx xiq1 ii i

dc X x yxx iq 1iq1 iq1 2q x d x . 34Ž .H
dt D xx ii

For control-volume 1, E crE xs0 at xs0, and the
quadratic variation assumption yields

E c Xx 2 2cx d xH
Et 0

2 4X Xdc x x d xx x2 21 2 2s x d xyH H2 2 2 2dt x yx x yx0 02 1 2 1

4 2X Xdc x d x xx x2 22 1 2q y x d x 35Ž .H H2 2 2 2dt x yx x yx0 02 1 2 1

and the spatial-derivative term is
X X

E c 2 x 2 x2 2X 2x sy c q c . 36Ž .2 1 22 2 2 2XE x x yx x yxx 2 1 2 12

Similar expressions can be derived for control-volume
N where a quadratic variation can be assumed and wherex

the end-concentration, c , at xs1 is known. However,S

the quadratic-variation algorithm did not improve signifi-
cantly the results for the test cases over the linear-variation
algorithm. This result indicates that the spatial derivative at

Ž .the grain boundary xs1 is not more accurately approxi-
mated by the quadratic variation than by the linear varia-
tion. In the following, only the results for the linear
variation of the spatial derivative will be presented.

3.3. Time discretization

The time-derivative term is discretized with the back-
ward Euler approximation:

dc cnq1 ycn
i i i
s , 37Ž .

dt Dt

where superscripts n and nq1 represent the beginning
and the end of a time-step, respectively. The spatial-deriva-
tive terms are fully implicit:

nq1 nq1E c c yci iy1
s , 38Ž .

XE x D xx iy1i

thus ensuring numerical stability.
With the combination of the previous spatial scheme

and this time scheme, for a constant increment D x,
higher-order terms are minimized when the following con-
dition is fulfilled:

DtsC D x 2 39Ž .x

where C is the condition number found by varying Dtx

until error minimization is achieved.
In our case of variable spatial increments, we general-

ize the previous formula for given test cases by searching
for the optimal value, Dt :OPT

Dt sC D x 2 . 40Ž .OPT x Nx

In fuel rod design computer codes like
w xTRANSURANUS 29 , the time-step, Dt , is commonCODE

to all physical models. It is managed by finding the
smallest time-step that is compatible for numerical stability
andror precision of the models. The following strategy is
proposed for such codes: if Dt -Dt , compute theCODE OPT

concentrations with Dt and interpolate for Dt ,,OPT CODE

otherwise impose Dt sDt . This strategy, that isCODE OPT

discussed in the next Section, proved to be efficient.
Once discretized with this double choice of space and

time discretization, the diffusion equation symbolically
reads

A A
nq1 nqB c s c qP , 41Ž .ž /Dt Dt

where A and B are tridiagonal matrices.

4. Results

4.1. Introduction

Simple cases are presented initially before the full
problem of time-varying conditions as well as time-vary-
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Fig. 2. Gas release fraction versus time for constant gas produc-
tion, zero concentration at the boundary and Dra2 s7.1=10y10

sy1.

ing boundary conditions is presented. For steady-state
conditions, analytical solutions exist that can be compared
with predictions. The first case represents constant gas
production and a perfect sink. This case is relevant to

Žsteady-state LWR operation except for the perfect sink
.condition . The second case represents zero gas production

and a perfect sink. This case is relevant to power transients
when the diffusional release dominates the gas production.
The third case represents constant gas production with an
imperfect sink. This case is similar to the first case but is
more realistic.

4.2. Steady-state conditions

4.2.1. Perfect sink with gas production
In this case,

bsconstant, c r , 0 s0, c a, t s0. 42Ž . Ž . Ž .
w xBooth 3 found an analytical expression for the release

fraction, F:
2 2 26 1yexp n p DtraŽ .

F t s1y . 43Ž . Ž .Ý2 4 4Dtra n pns1

Fig. 2 presents a comparison between the analytical
Ž Ž ..solution Eq. 43 and predictions made with 10 higher-

order finite volumes. Typical LWR steady-state operations
were chosen, namely, Ts9008C, PX s20 kWrm. From

Ž . Ž . y20 2Eqs. 1 – 7 , Ds1.78=10 m rs and a grain size
with radius as5=10y6 m was assumed. The irradiation
range extends to about 70 000 MWdrtM.

Fig. 3 illustrates the absolute error

D F % sF % yF % , 44Ž . Ž . Ž . Ž .NUM ANAL

where F is the result of computations and F isNUM ANAL
Ž Ž ..the analytical expression Eq. 43 . F was derivedNUM

with the relation

H1cx 2 d x0
F s100 1y , 45Ž .NUM X Xt 1 2ž /H dt H b x d x0 0

Fig. 3. Absolute error for 10 low-order and 10 high-order finite-
volumes and the case of Fig. 2.

where the higher-order spatial variation is assumed for c.
Fig. 3 also presents a comparison of the predictions obtains
with 10 low-order finite-volumes and clearly demonstrates
the improvement in accuracy achieved by going from the
low-order to the higher-order spatial scheme. Note the
error becomes larger at low releases. This is of no impor-
tance because, with this simple case, low release occurs at

Ž .the very early stage of irradiation -100 h in typical
LWR steady-state operation.

Fig. 4 illustrates how the absolute error varies with the
condition number C for 10 higher-order finite-volumes.x

An optimal choice with C ;0.2 was found. The error isx

below 0.2% over the entire irradiation range with this
value of the condition number.

The minimum number of finite-volumes that are com-
patible with a required bound for the error will now be
determined. Fig. 5 shows the error calculated for different
numbers of finite-volumes and with a condition number of

Ž0.2 this condition number was found to be optimal irre-
.spective of the number of finite-volumes . Except at the

very early stage of irradiation, three finite-volumes are

Fig. 4. Variation of the absolute error with time-step for 10
high-order finite-volumes and the case of Fig. 2.
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Fig. 5. Variation of the absolute error with the number of finite-
volumes for the case of Fig. 2.

sufficient for good accuracy. This number is identical to
w xthe number of quadratic finite-elements used in Ref. 9 .

4.2.2. Perfect sink without gas production
Except for the perfect sink condition, this case is

relevant to LWR Class-I and Class-II type conditions. The
Ž .diffusion Eq. 26 is solved with the following conditions:

bs0, c r , 0 sconstantsc , c a, t s0.Ž . Ž .0

46Ž .
w xThis problem has the following analytical solution 3 :

2 2 2exp yn p DtraŽ .
F t s1y6 . 47Ž . Ž .Ý 2 2n pns1

The following conditions, typical of an upper-bound
limit of all Class-I conditions wee chosen for this test case:
Ts15008C, PX s40 kWrm, Ds3.2=10y17 m2rs, and
transient length equal to 10 h. For an upper-bound limit of
all Class-II incidents, the power is slightly higher, but the
transient length is shorter, resulting in less release. Fig. 6
presents a comparison between the analytical expression

Fig. 6. Gas release fraction versus time without gas production,
zero concentration at the boundary and Dra2 s1.3=10y6 sy1.

Ž Ž ..Eq. 47 and numerical computations made with 10 and 3
high-order finite-volumes. Again, a condition number equal
to 0.2 was used. As before, three finite-volumes are suffi-
cient for good accuracy.

With three finite-volumes, the optimum choice for the
previous constant gas production case is D ts1240 h,
which is greater than typical time-step values of fuel rod

Ž .design computer codes of the order of 100 h . Therefore,
the strategy Dt -Dt holds.CODE OPT

For this case, D ts0.75 h and the other alternative
strategy Dt sDt is likely to hold.CODE OPT

4.2.3. Imperfect sink
The diffusion equation is solved with the following

boundary conditions:

bsconstant, c r , 0 sconstantsc ,Ž . 0

c a, t sc s bN d r 2 D . 48Ž . Ž . Ž .Ž .d s

w xThe solution is 5

2 2F t s1y br15qc q6Ý c yc r n pŽ . Ž . Ž .Žd ns1 0 d

ybr n4p 4 exp yn2p 2Dtra2Ž . Ž ..
Xtr c qH b d t . 49Ž .Ž .0 0

The same irradiation conditions as the perfect sink test
case of Section 4.2.1 were chosen. Additional conditions

26 y3 Žare for c and c : c s2.15=10 m gas production0 d 0
. 25 y3after 20 000 h of irradiation and c s3.15=10 m .d

Fig. 7 is similar to Fig. 6 and the conclusions are identical:
three finite-volumes give good accuracy.

4.3. Time-Õarying conditions

4.3.1. Perfect sink
The algorithm will now be tested for time-varying

Žconditions, with a perfect sink boundary condition this
.Sub-Section , and then, with an imperfect sink condition

Fig. 7. Gas release fraction versus time for constant gas produc-
tion, finite concentration at the boundary Dra2 s7.1=10y10

sy1 , N s2.5=1020 my2 and bs10y6 sy1.S
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Fig. 8. Gas release fraction versus time for time-varying condi-
tions and zero concentration at the boundary.

Ž .next Sub-Section . As mentioned before, the time-varying
operating condition of most interest is a power transient
that represents an upper-bound of Class-I conditions. A
test case with irradiation conditions made up of 5 time
intervals is presented. Time intervals 1 and 5 represent
steady-state operations with T s 9508C and PX s 25
kWrm. The power transient lasts during time intervals 2
Ž . Ž .ramping-up phase , 3 high power hold phase and 4
Ž .ramping-down phase . Time intervals 2 and 4 are 1 h.
Time interval 3 is 10 h. Conditions for interval 3 are the
same as those in Section 4.2.2 except that gas production
is now finite.

Fig. 8 shows the evolution of the gas release fraction.
Again, 3 higher-order finite-volumes are enough for good
accuracy. The time-step management has been studied.
The interpolation scheme described in Section 3.3 has been
refined. With the above-mentioned conditions during
steady-state, the time-step is equal to 1240 h for a condi-
tion number of 0.2 and 3 higher-order finite-volumes. This
value is more than 10 times larger than the typical value

Ž .found in fuel rod design computer codes about 100 h .
Direct interpolation, for that reason, gives a slightly inac-

Fig. 9. Gas release fraction versus time for time-varying condi-
tions and finite concentration at the boundary.

curate value. However, when the second derivative of the
concentration with respect to time is negative, direct inter-
polation under-estimates the value of the concentration. On
the other hand, Figs. 2–5 show that with a condition
number less than 0.2, the values of the concentration are
over-estimated. Hence, we have tested the following algo-
rithm:

cnq1 s0.5 cnq1 qcnq1 , 50Ž .Ž .1 2

where cnq1 is evaluated with time-step Dt and cnq1
1 CODE 2

Ž .is obtained by linear interpolation or extrapolation from
Dt to Dt :OPT CODE

nq1 nq1 nc s c Dt qc Dt yDt rDt .Ž .2 CODE OPT CODE OPT

51Ž .

ŽThis time-step algorithm was adopted using Dt sCODE
.100 h during intervals 1 and 5 for Fig. 8 and, as shown,

yields good results.

4.3.2. Imperfect sink
The conditions for this case are the same as those of

Section 4.3.1, except, now, the boundary condition is
Ž . Ž .given by Eq. 8 . Below saturation N-N , the surfaceS

density N is numerically evaluated through the mass bal-
Žance equation gas production is then equal to the amount

.of gas inside the grain and on the grain boundary :

1 N t1 1X X2 2cx d xq s dt b x d x . 52Ž .H H H
2 a0 0 0

An iteration scheme is used and stops at iteration j
whenever

< iq1 i < iq1N yN rN F0.01. 53Ž .
In practice, two iterations were sufficient for conver-

gence.
The saturation value N is obtained when the burnup ofS

Ž .the incubation curve Fig. 1 is reached. Fig. 9 illustrates
the evolution of the gas release fraction. In the test case,
N has been assumed constant for the purpose of illustra-S

tion. Obviously, a more complicated law could be used
that includes a temperature and pressure dependence, and
even more, a kinetic evolution. The refined time-step
algorithm defined in the previous Section was used to
generate the curves of Fig. 9. This algorithm, together with
only 3 higher-order finite-volumes, yields good results.

5. Discussion

5.1. Comparison with other algorithms

w xFor the steady-state case, Refs. 12,13 use the semi-
Ž Ž ..analytical approximation Eq. 49 where, now,

c sb t y3N r2 a 54Ž .0 i S
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and t is replaced by ty t in the exponential term. Fig. 10i

presents a comparison between this approximation and the
numerical scheme for the steady-state irradiation condi-
tions used in Section 4.3.1. Results shown in Fig. 10 and

w x Žin Ref. 12 are virtually identical see for instance fig. 10
w x.in Ref. 12 . This approximation over-estimates the gas

release fraction. This over-estimation is more pronounced
at low release values and is less than 3% at the highest
release value. The approximation, in effect, smears out the
initial concentration profile at incubation. Hence, the initial
concentration gradient at the boundary is too steep and
induces an initial release too quickly.

w xThe physical model 12 is similar to the model pre-
sented in this paper. The major difference is that the
incubation is prescribed in the present model and the
density at saturation, N , is numerically deduced from theS

Ž . w xmass balance Eq. 52 . In Ref. 12 , N , was prescribedS

and then, the incubation curve was deduced by solving the
Ž .approximate equation, Eq. 13 . Other differences come

w xfrom the numerical treatment. In Ref. 12 , finite differ-
ences were used. Also, re-solution was treated as a bound-
ary layer whose thickness was 2d . That is, the gas produc-
tion in the boundary layer, b , was b sbqbNr4d ,BL BL

Ž .and the boundary condition remained c a, t s0. This
approach required 100 mesh points, as mesh accumulation
close to the boundary was needed, due to the small value
of d;10y8 m. From the previous discussion, a small
mesh size also limits the time-step. The finite difference

w x Žscheme was improved by using finite elements 14 10
.finite elements only were needed for good convergence .

w x w xHowever, in Ref. 14 like in Ref. 12 , the boundary layer
approach is somewhat penalizing. On the other hand, the
similarity between the results presented here and those of

w xRef. 12 indicate that both approaches are nearly equiva-
lent.

Another approximation in the case of a transient has
been tested. It consists of neglecting the gas production

Fig. 10. Gas release fraction versus time for constant gas produc-
tion. Comparison between finite-volume calculations and the

w xsemi-analytical approximation used in Ref. 12 .

Fig. 11. Grain volume average concentration versus time for
time-varying conditions. Comparison between finite-volume cal-

w xculations and the semi-analytical approximation used in Ref. 15 .

during the transient. The approximation then becomes a
Ž .generalization of Eq. 47

1 t2 2 2² : ² :c s c 6 exp yn p D d tra ,INI HÝ 2 2n p t INIns1

55Ž .
² :where c is the grain volume average of the concentra-

² :tion, t is the time when the transient begins and c INIINI

is the concentration at t . For example, with this approxi-INI

mation, the gas release fraction is over-estimated by 7% at
the end of the transient shown in Fig. 9. The approxima-
tion has the same smearing-out effect on the initial concen-
tration profile as mentioned before.

w xA third approximation was proposed in Ref. 15 : the
² :evolution of c from a given time t follows the evolu-0

² :tion of c at an equivalent time. This equivalent time is
² :given by the time needed to reach the value of c at t0

assuming the temperature level is constant and equal to the
² :value at t . Fig. 11 compares the evolution of c between0

this approximation and numerical scheme for the case of
Section 4.3.2, starting at the beginning of interval 5.
Again, this approximation over-estimates the gas release as
it smears out the concentration profile.

5.2. Computer time

This fission gas release model has been implemented in
the version of the fuel rod computer code TRANSURANUS
w x29 used at Framatome. The computer time used by the
model has been measured. It is about 10% of the computer
time used by the code. This number applies to the refer-
ence numerical scheme that consists of 3 higher-order
finite-volumes, 2 iterations for convergence of the bound-
ary concentration, and 2 time-steps per code time-step,

Ž .following Eq. 51 . The relative low time spent in calculat-
ing fission gas makes the numerical scheme presented here
attractive.
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6. Conclusion

A model for thermally-activated fission gas release
from UO fuel has been developed. The model includes2

relevant physical phenomena such as the diffusion of
fission gas from the UO grain interior to the grain2

boundary, re-solution within the grain and grain boundary,
and gas saturation at the grain boundary.

The problems were numerically solved by applying a
finite-volume method. The method was optimized for LWR

Ž .operations within Class-I and Class-II limits . A new
space and time discretization scheme was found. There is
an excellent agreement between the numerical computa-
tions and the known analytical results that pertain to
time-independent conditions. The method is efficient for
application in fuel rod design computer codes because the
computer time spent in the fission release calculations is
typically 10% of the total computer time.
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